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1 Introduction

In economics and finance there are many instances where longitudinal data changes regimes

at different points in time when experiencing structural breaks. For example, models of

the real gross domestic products of the world’s economies, or the returns from the group of

actively managed mutual funds, can have parameters that change over time and across the

cross-section. When measuring the performance of actively managed mutual funds it is the

fund-regime performance parameter, alpha, that changes from regime to regime and from

fund to fund. Allowing for changes in each fund’s alpha at different points in time allows

there to be periods when some funds are skilled and other times when the same funds are

unskilled. To model this regime parameter behavior over a cross-section of individuals our

first contribution is to extend the change point model to a panel of change point processes.1

In particular, we model the performance of actively managed mutual funds with a multiple-

change-point panel model where the skill level of each fund follows its own change-point

process.

Hierarchical priors have been an important advancement to the estimation of the regime

parameters of structural break models (see Pesaran et al. (2006), Koop & Potter (2007),

Geweke & Jiang (2011), Maheu & Song (2014) and Song (2014)). Under hierarchical priors

the hyperparameters are unknown and their values are learned about through the informa-

tion in the regimes. By mixing the conditional hierarchical prior over the posterior of its

hyperparameters, the hierarchical prior’s posterior predictive distribution flexibly models

how the parameters are distributed over the regimes.

These hierarchical priors, however, are restrictive in the sense that the prior for the

hyperparameter, the hyperprior distribution, is assumed to be known. Assuming the hy-

perprior distribution is known can lead to the undesirable outcome of the regime parameter

estimates shrinking towards the global average of the regimes (see Gelman et al. (2013),

Chapter 5). For example, when measuring mutual fund skill the performance estimate for

a highly skilled mutual fund shrinks to that of an ordinary fund (see Jones & Shanken

(2005)).

To provide a better and more robust estimate of the parameters we model the hierar-

chical prior nonparametrically by letting the hyperprior be unknown, giving it a Dirichlet

process prior, and estimating it along with the hyperparameters. Nonparametric hierar-

chical priors span the space of distributions, including multimodal, skewed, and kurtotic

1Frühwirth-Schnatter & Kaufmann (2006) model a panel of bank lending series with a multiple-structural-
break model. Billio et al. (2016) also propose a panel of Markov switching vector autoregressive models but
their panel is relatively small compared to the size of the panel we envision here.
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distributions (see Lijoi et al. (2005)). This spanning property is especially important when

estimating the parameters of an extraordinary individual or for an extreme regime. Our

second contribution relaxes the parametric nature of the hierarchical priors and flexibly

models the hierarchical priors nonparametrically by letting the hyperprior be unknown.

The last contribution of the paper is found by applying our multiple-change-point panel

model to a cross-section of mutual fund return data and estimating the alphas for each

fund and their different regimes. Estimates of these fund-regime alphas help answer if

above market returns by a fund today are any indication of future excellence by the fund.2

The answer depends on a number of factors, for instance, who the fund manager is, whether

the fund changes its strategy or objective, if the fund adjusts its risk exposure, what the

fund’s flow of assets under management is, and how the fund manager is compensated. A

change in any one of these factors can result in a new regime and a different value for alpha.

We find there to be overwhelming empirical evidence in favor of mutual fund performance

following a change-point process so there are no guarantees future performance will mirror

today’s.

Our plan for the paper is to describe in Section 2 our multiple-change-point panel model.

Section 3 then defines the nonparametric hierarchical priors for the model parameters. In

that section we also define the Dirichlet process prior for an unknown hyperprior distribu-

tion. A Markov chain Monte Carlo (MCMC) sampler of the unknowns is then described in

Section 4. Section 4.4 explains how the posterior draws from the MCMC sampler are used

to infer how the unknowns are distributed over mutual funds and their regimes. In Section

5 we apply the multiple-change-point panel model, using both nonparametric and paramet-

ric, hierarchical, priors, to a unbalanced panel of actively managed, US equity, mutual fund

return data. Section 6 concludes with a summary of our findings.

2 Modeling a panel of multiple-change-point processes

Our multiple-change-point panel model extends the models of Chib (1998), Pesaran et al.

(2006), Koop & Potter (2007) and Geweke & Jiang (2011). Instead of there being a single

change point process, our model consists of a cross-section of multiple-change-point pro-

cesses. Given our interest in measuring the empirical performance of mutual funds and

their ability to sustain above market returns we describe the model in terms of mutual fund

returns.

2See Grinblatt & Sheridan (1992), Hendricks et al. (1993), Goetzmann & Ibbotson (1994), Elton et al.
(1996), Bollen & Busse (2004), and Busse & Irvine (2006) for empirical evidence favoring a mutual fund
performance today predicting future performance and Carhart (1997) for a contrary view.
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Let yi,t, i = 1, . . . , J, and, t = τi, . . . , Ti, where 1 ≤ τi, be the risk-free adjusted, gross

returns in month t for the ith mutual fund from a longitudinal data set where the length of

the series is Ti = Ti − τi + 1. In contrast to the existing literature on change-point models,

the lengths of the time series are all small relative to the size of the cross-section, J . In

addition, the panel does not have to be balanced. As a result our model can handle return

histories, Yi,Ti = (yi,τi , . . . , yi,Ti)
′, that are of different lengths; ie., Ti does not have to equal

Ti′ . The model can also handle return histories that do not line up in time so τi does not

need to be equal to τi′ .

Following Chib (1998) we model the change point processes with a hidden Markov chain

process. Let Mi be the maximum number of regimes the ith mutual fund can experience.

In addition, let m ∈ {1, . . . ,Mi} index the fund-regimes where the probability of switching

to a new fund-regime is qi. Fund i’s restricted Markov break process at observation t is

denoted by si,t, where t = τi, τi + 1, . . .. The change point process can then be represented

by the following hierarchical prior

Pr(si,t+1 = l|si,t = m, qi) =


1− qi l = m < Mi,
qi l = m+ 1,
1 l = m = Mi,
0 otherwise,

(1)

Pr(si,τi = 1) = 1, and where the next level in the hierarchy is the prior for qi.

According to Eq. (1) once a break occurs a fund cannot return to an earlier regime, nor

can it skip over a regime. Such change point behavior is not restrictive when measuring

the persistence in mutual fund performance. Mutual fund skill and stock picking strategies

are difficult to replicate over different time periods. Hence, even if a past trading strategy

could be adopted, or a known skilled manager were to be hired, performance today would

most likely differ from the past given the additional information available today and the

changing market environment.

In Eq. (1), once si,t reaches the Mith regime it stays there and cannot experience another

break. To avoid a pile-up on Mi and the problems found in Koop & Potter (2007), we follow

Bauwens et al. (2015) and set Mi apriori and monitor si,t to ensure that it never reaches Mi

before t equals Ti. In addition, to speed up estimation we assign smaller Mis to those funds

with shorter histories, Ti (see Fig. 1 for a graph of the value for the Mis). This reduces the

need to estimate a large number of out-of-sample, fund-regime parameters.3

3Our approach requires estimating the parameter values for all Mi regimes and evaluating their likeli-
hoods. It would be computationally less demanding if we could use the approach of Maheu & Song (2014)
and let the number of change points be unknown. However, this would require the priors for the regime
parameters to be joint conjugate which would restrict the flexibility of our nonparametric hierarchical priors.

4



The transition probability, qi, is the same as in Chib (1998) and Pesaran et al. (2006),

in that it is constant over time. Notice also that qi does not depend on the regime m

(see McCulloch & Tsay (1993) and Geweke & Jiang (2011) for models with the same

assumption). Each fund’s transition probability is different but we assume they all come

from the same cross-sectional distribution, qi
iid∼ πq, i = 1, . . . , J .

As pointed out by Koop & Potter (2007), letting qi be constant has consequences.

It means the duration of a regime follows a Geometric distribution where shorter length

regimes have a higher probability of occurrence than do longer regimes. Although restrictive,

empirically we find that by implicitly modeling the duration distribution as an unknown

distribution through an unknown πq, the probability of a long-lived regime occurring is not

that much lower than the probability of a short-lived regime.

To simplify our exposition on estimating our multiple-change-point panel model, we

limit the regime parameters to the skill level and the variance of the mutual fund returns

in a zero risk-factor model. Later, in our empirical analysis, we let the returns follow a four

factor risk model where the unknown beta coefficients follow the same change point process

underlying the regime parameter values of skill and variance.

Let αim and σ2im be the level of skill and variance of the mth regime for the ith fund.

Using a dynamic structural investment model of mutual fund performance, Koijen (2014)

shows that changes in a fund’s strategy or its manager is equivalent to αim changing value

with each regime m. When si,t = m, the conditional sampling distribution of yi,t is then

defined to be

p(yi,t|Yi,t−1, si,t = m) ≡ N(αim, σ
2
im). (2)

We could replace normally distributed returns with the scaled normal mixture rep-

resentation of a Student-t distribution. A time-varying stochastic volatility process for

the variances could also be used in place of the constant fund-regime variance. However,

monthly mutual fund returns do not exhibit the liptokurtosis and time-varying volatility

prevalent in daily stock return data. Instead, monthly mutual fund returns are known for

their homoskedasticity and normality.

Let Y := {Yi,Ti}Ji=1 be the entire panel of mutual fund return data, andαi = (αi1, . . . , αiMi)
′,

and, σ2
i = (σ2i1, . . . , σ

2
iMi

)′, be all the regime parameters for the ith mutual fund. Denote the

history of the latent change points up to time t as Sit = (si,τi , . . . , si,t) so that SiTi contains

the entire in-sample history of the change points. If we assume trading strategies and stock

picking skills are proprietary secrets, and, therefore, cannot be copied by, or transferred to,
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another fund, the joint likelihood is written as

p(Y|α,σ2,S) =
J∏
i=1

Ti∏
t=τi

p(yi,t|αisi,t , σ2isi,t), (3)

where α := {αi}Ji=1, σ
2 := {σ2

i }Ji=1, and S := {SiTi}Ji=1. This factoring of the likelihood

simplifies both the exposition and the computation, but it is not necessary. One could

choose to follow the approach of Jones & Shanken (2005) and model the cross-correlation

between fund returns with a latent residual factor structure.

3 Nonparametric hierarchical priors

What one assumes about the priors for the regime parameters and transition probabilities

plays an important role in the behavior of the multiple-change-point panel model and the

measurement of mutual fund performance and its persistence. Specification of the prior

can affect the expectation about the future performance of the actively managed mutual

fund industry, the level of certainty in a fund’s measure of performance, and the inference

about how skill, risk taking, and the probability of a new regime, are distributed across the

population of mutual funds and their regimes.

To answer these and other mutual fund performance related questions with our multiple-

change-point panel model we denote the prior distribution for αim, σ2im, and, qi, as πα,

πσ, and πq, respectively. We also assume each prior is unknown and modeled with a

nonparametric hierarchical prior where the hyperprior is unknown and follows the Dirichlet

process (DP) of Ferguson (1973).

Our approach is similar but slightly different from Frühwirth-Schnatter & Kaufmann’s

(2008) unobserved heterogeneous, model-based, clustering approach. The two approaches

are similar in that both model the hyperprior as an unknown. But, they differ in that

Frühwirth-Schnatter & Kaufmann (2008) models the hyperprior with a finite mixture,

whereas our hyperprior is almost surely an infinite ordered mixture distribution.4

Formally, our nonparametric hierarchical prior for the panel of skill measurements, αim,

is defined as

αim|aα,im, h2α,im ∼ N(aα,im, h
2
α,im), (4)

(aα,im, h
2
α,im) ∼ Gα, (5)

4Chan & Koop (2014) also use Frühwirth-Schnatter & Kaufmann’s (2008) unobserved heterogeneous,
model-based, clustering approach to group together structural break series.
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where Gα is a unknown hyperprior distribution. A similar conditional prior representation

exists for our nonparametric hierarchical prior of the multiple-change-point variances, σ2im,

where

σ2im|h2σ,im ∼ Inv-Gamma(νσ/2, νσh
2
σ,im/2), (6)

h2σ,im ∼ Gσ. (7)

Note the shape hyperparameter, νσ, is assumed to be known and is equal to the same value

for all J mutual funds. In Eq. (6) and (7), h2σ,im is the unknown scale hyperparameter

whose distribution, Gσ, is unknown.5

We define the nonparametric hierarchical prior for the transition probabilities, qi, to be

qi|ji, ki ∼ Beta(ji, ki − ji + 1), (8)

(ji, ki) ∼ Gq, (9)

where ki ∈ N, ji ∈ {1, . . . , ki}, and Gq is the unknown hyperprior distribution. Unlike the

regime parameters’ hierarchical priors, which model how the parameters are distributed

across both fund and their regimes, Eq. (8)-(9) only models how the qis are distributed

across the J funds.6

Mixing the beta distribution in Eq. (8) over its hyperparameters leads to the flexible

Bernstein prior. Research by Petrone & Wasserman (2002) shows the posterior of the

Bernstein prior converging to the true data generating density of a continuous and bounded

distribution residing on the unit interval. To our knowledge a hierarchical beta distribution

has never been proposed before as a prior for an unknown parameter defined on the unit

interval (see Fisher (2017)).

Hierarchical priors like those above are desirable since they facilitate the sharing of

information across the cross-section of funds and their regimes through the priors’ unknown

hyperparameters, aα,im, h2α,im, h2σ,im, ji and ki. For instance, the observed performance of

a highly skilled manager or a particular trading strategy gets reflected in the posterior of

the performance prior’s hyperparameters aα,im and h2α,im. These posterior hyperparameter

estimates then help reduce the uncertainty around how another fund might perform if it were

to hire away the manager or adopt the same trading strategy. This sharing of information

5Because neither the conditional variances, nor their log transform, are normally distributed, our multiple-
change-point panel model does not have the mixture innovation representation of Giordani & Kohn (2008).
Therefore, we cannot sample the change point process with Gerlach et al.’s (2000) fast and efficient algorithm.

6If in the future we were interested in investigating the persistence of a particular regime, mi, for instance,
the skill of a highly successful manager, there is nothing in our approach that would prohibit it from being
extended to the regime specific transition probability case.
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through the learning of the hyperparameters is not possible when the parameters come from

a prior distribution whose hyperparameters are fixed apriori.

Parametric hierarchical priors where the hyperprior distribution is assumed to be known

have been used before to infer the parameters of change points and structural break mod-

els (see Pesaran et al. (2006), Koop & Potter (2007), Geweke & Jiang (2011) and Maheu

& Song (2014)). In the context of mutual fund performance, assuming the hyperprior

is known amounts to making a strong assumption about how the change point parame-

ters are distributed across the funds and their regimes. For instance, assuming a normal,

inverse-gamma hyperprior for Gα explicitly leads to the alphas being distributed over the

population of mutual funds and their regimes in a unimodal fashion whose mode is the

global average skill level. Given the abundant information contained in the cross-section

of a longitudinal data set, this parametric assumption causes the posterior estimates to

globally shrink towards the average fund-regime level. Alphas for the highly skilled and

unskilled fund-regimes will end up looking ordinary like that of the skill level for a typical

fund-regime. To overcome this global shrinkage we let the hyperpriors be unknown and,

like the hyperparameters, learn about the hyperprior distributions by modeling them with

DP priors.

3.1 Dirichlet process prior

The Dirichlet process has received considerable attention from the Bayesian nonparametric

community as a prior to the mixture weights and location parameters of a infinite mixture

representation of a unknown distribution (see Escobar & West (1995) and Hjort et al. (2010),

and the chapters therein, for a good introduction to the DP). DPs have also been used

extensively in economics and finance to model unknown distributions (see Chib & Tiwari

(1988), Chib & Hamilton (2002), Hirano (2002), Jensen & Maheu (2010), and Bassetti

et al. (2014)). In addition, Song (2014), Dufays (2015), Jochmann (2015) and Jin & Maheu

(2016) apply the DP to structural break models to allow for an infinite number of possible

regimes.

One reason for this attention is that the DP delivers a sparse mixture representation of

unknown distributions. It is this sparsity that leads to the local shrinkage in the regime

parameter estimates. Another reason is the DPs ease of use. As a conjugate distribution

the DP lends itself to a straightforward sampler, one that quickly converges to draws from

the posterior distribution of the nonparametric hierarchical prior. Under the DP prior our

nonparametric hierarchical prior also nests the parametric hierarchical priors used by Chib

(1998), Pesaran et al. (2006) and Geweke & Jiang (2011). These properties lead us to apply
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the DP prior to the three hierarchical priors defined in Eq. (4)–(9).

Let the unknown hyperpriors have the following DP priors

Gα ∼ DP (ηα, Gα,0), (10)

Gσ ∼ DP (ησ, Gσ,0), (11)

Gq ∼ DP (ηq, Gq,0). (12)

The non-negative scalars, ηα, ησ, and ηq, are the concentration parameters of the DPs.

Their value is important since it determines the propensity of clustering and the variance in

the DP; e.g., for the hyperprior Gσ, Var[Gσ(A)] = [Gσ,0(A)(1 − Gσ,0(A))]/(1 + ησ), where

A is a measurable subset of h2σ,im domain. A larger concentration parameter causes the

DP to be less parsimonious and to have a lower propensity to cluster the hyperparameters

together. For example, when ησ →∞, each σ2im belongs to its own unique group.

To simplify our exposition we initially treat the concentration parameters as known

values, but, empirically infer their value by sampling from their conditional posterior distri-

bution. When sampled we assume a Log-Logistic(1, 1) distribution for their prior.7 Under

this prior the probability of the DP having a second cluster, u• ≡ η•/(1 + η•), is uniform

over the unit interval. This probability goes to zero as η• → 0, whereas it goes to one as

η• → ∞. We can then address the amount of empirical evidence in favor of a parametric

hierarchical prior by measuring the posterior density of u• at zero.

Gσ,0, Gα,0, and Gq,0 are the base distributions of the DP priors and must be specified

by the econometrician. These distributions equal the expected distribution of the DP prior;

e.g., Gσ,0 ≡ E[Gσ]. In our nonparametric hierarchical priors, the base distribution rep-

resents our initial view about how the hyperparameters are distributed over the relevant

population. In this paper we choose base distributions that bring as little prior information

about the population distribution to the analysis as possible.8

In our empirical application we set Gα,0 equal to the conditional conjugate, normal,

inverse-gamma distribution, NIG(aα, h
2
α|a0, h2α/κ0, ν0/2, ν0h20/2), where the mean is a0 = 0,

the scaling of the variance is κ0 = 0.1, the shape is ν0/2 = 0.005, and the scale is ν0h
2
0/2 =

0.005× 0.01. With the NIG base distribution it follows from Eq. (4) that our initial guess

for how the alphas are distributed over the funds and their regimes is represented by the

7The probability density function for the Log-Logistic(1, 1) prior distribution of η• is 1/(1 + η•)
2 when

η• > 0, zero otherwise.
8In subsequent research we have found that the empirical results in Section 5 are robust to the choice

of the base distribution, as long as there is sufficient variation in the prior distributions drawn from the
nonparametric hierarchical prior.
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prior predictive Student-t distribution

EGα,0 [EGα [πα(α|Gα)]] =

∫
N(α|aα, h2α) NIG

(
aα, h

2
α

∣∣a0, h2α/κ0, ν0/2, ν0h20/2) d(aα, h
2
α),

= tν0

(
α

∣∣∣∣a0,(κ0 + 1

κ0

)
ν0h

2
0

)
, (13)

where the first expectation is taken with respect to the unknown hyperprior, Gα, which

equals Gα,0.

Other than the efficient market hypothesis argument that the average level of skill

over the population is zero (a0 = 0), there is little theory to guide us as to what the

population distribution for the alphas should look like. Instead, we intentionally set the

degrees of freedom, ν0, to be less than two in order for the variance of the prior predictive

distribution of the alphas to be undefined. With an undefined variance our initial guess at

the distribution of skill is very diffuse and uninformative.9

For the prior of the variances we let Gσ,0 ≡ Gamma
(
h2σ
∣∣ c0, 1/b0), with shape, c0 = 0.3,

and scale, b0 = 0.001. We also set the scale of the conditional, inverse-gamma, prior in

Eq. (6) equal to νσ = 0.5. Dubey (1970) shows that a gamma hyperprior to the conditional

inverse-gamma distribution results in the proper beta prime, prior predictive, distribution

EGσ,0 [EGσ [πσ(σ2|Gσ)]] =

(
σ2

w + 1
)c0+νσ/2 (

σ2

w

)c0−1
w Beta(c0, νσ/2)

, (14)

where w = νσ/(2b0) and Beta(c0, νσ/2) is the beta function.

For the chosen values of c0, b0 and νσ, the expected value of the proper beta prime is

undefined. However, its median is 402.99 and its lower and upper quantile are 26.5 and

7966.6, respectively. Hence, our initial guess at how the variances are distributed over

the funds and their regimes is very diffuse. This ensures that the posterior predictive

distribution of the variances will be based on the longitudinal return data.

In the hierarchical prior for the qis, Eq. (8) is equivalent to the distribution of a jith

order statistic for a random sample of ki uniform draws. By the adding-up property of the

Bernstein polynomial, the prior predictive for the qis is thus a uniform distribution on the

unit interval

EGq,0 [EGq [πq(q|Gq)]] = Uniform(q|0, 1), (15)

9For our nonparametric hierarchical prior to have a proper prior predictive distribution the DP’s base
distribution must be a proper distribution. As a result we cannot use a Jeffereys prior for the base distribu-
tion.
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regardless of the value of ki. The base distribution, Gq,0, is characterized by

ji|ki ∼ Uniform(1, . . . , ki), (16)

ki − 1 ∼ Geometric(ξ0). (17)

Even though the value of ki does not affect the prior predictive uniform distribution, its does

affect the variation in the random realizations from the nonparametric hierarchical prior.

Small values of ki (a wider beta kernel) restrict the variation in the random realizations,

whereas a large ki (a tighter beta kernel) enhances the variation.

Shrinkage is also controlled by the value of ki. When ki = 1 there is no local shrinkage

in a cluster’s qis, whereas, when ki → ∞, there is complete local shrinkage. Given these

properties we desire more weight be placed on larger values of ki, so we set ξ0 = 1/200 such

that Pr(ki = 1) = 1/200 and E[ki] = 200.

Besides using these specific base distributions for the nonparametric hierarchical priors

in our empirical analysis we also use them as the known hyperpriors of the parametric

hierarchical priors. The prior predictives are then the same for both the parametric and

nonparametric hierarchical priors.

3.2 Posterior DP

After the returns from the panel of mutual funds are observed the posterior of the hier-

archical priors are calculated by updating the base distributions of the hyperprior’s DP.

Since we are interested in the behavior of skill it would be natural to discuss the posterior

distribution of the hyperparameters aα,im and h2α,im. However, their posterior has more

moving parts and is more complicated than the description of h2σ,im posterior so we only

explain the posterior in terms of the variance’s hyperparameters (see the online Appendix

for complete details on all the posteriors).

Suppose it were possible to observe the hyperparameters of all J funds and their NA =∑J
i=1 si,Ti total in-sample regimes.10 In terms of the hyperparameters for the prior of the

variances let Hσ,ST = {hσ,isTi}
J
i=1, where hσ,isTi = (h2σ,i1, . . . , h

2
σ,isiTi

)′ contains the NA

scale hyperparameters from all the funds and their in-sample regimes. If we could actually

observe Hσ,ST it would contain NA independent realizations from the unknown hyperprior,

Gσ.

10In practice the hyperparameters are never observed, hence, their uncertainty will need to be integrated
away after the information found in the return data of the funds and their regimes is used to quantify their
posterior distribution.
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Combining the hypothetical hyperparameter data in Hσ,ST with the conjugate DP prior

for Gσ results in the posterior DP hyperprior

Gσ |Hσ,ST ∼ DP

ησ + NA,
ησGσ,0 +

∑J
i=1

∑si,Ti
m=1 δh2σ,im

ησ + NA

 , (18)

where δh2σ,im
is a degenerative distribution at the location h2σ,im. Since the concentration

parameter of the posterior DP equals ησ + NA, the uncertainty around Gσ has declined.

The base distribution of the posterior DP distribution equals

ησGσ,0 +
∑J

i=1

∑si,Ti
m=1 δh2σ,im

ησ + NA

,

which illustrates how the initial guess, Gσ,0, has been updated with the empirical distribu-

tion of the “observed” hyperparameters, M−1ST
∑J

i=1

∑si,Ti
m=1 δh2σ,im

.

From the base distribution of the posterior DP we can see that as long as ησ is finite every

occurrence of the hyperparameters, h2σ,im, adds more empirical information to the guess of

Gσ, while giving less weight to the initial guess, Gσ,0. If the DP prior’s concentration

parameter were infinite (u• = 1), the variance of the DP would be zero and one would learn

nothing from the observed data.

At the other end of the spectrum is η• = 0 (u• = 0). In this situation every realization of

the hyperparameter has the exact same value equal to a single draw from Gσ,0. When this

is the case the nonparametric hierarchical prior is equivalent to the parametric hierarchical

prior having the hyperprior Gσ,0.

3.3 Clustering

According to the base distribution of the posterior DP in Eq. (18), a realization from the

posterior is a draw from either the initial base distribution, Gσ,0, or from the discrete

collection of NA degenerative distributions, δh2σ,im
. As explained in Section 3.2 drawing

from the discrete distribution depends on the value of ησ. These draws create ties between

the realizations, and, hence, creates Kσ clusters consisting of the unique hyperparameters,

h2∗σ,c, c = 1, . . . ,Kσ, where Kσ ≤ NA.11

The posterior DP in Eq. (18) can be rewritten in terms of the clusters as

Gσ |H∗σ,nσ ∼ DP

(
ησ + NA,

ησGσ,0 +
∑Kσ

c=1 nσ,cδh2∗σ,c
ησ + NA

)
, (19)

11This clustering is similar to the model-based clustering of Frühwirth-Schnatter & Kaufmann (2008)
except the clustering in our DP is in the hyperparameters and the number of clusters, Kσ, is unknown.
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where H∗σ = (h2∗σ,1, . . . , h
2∗
σ,Kσ)′ is a vector comprised of the Kσ-uniquely valued h2σ,ims, and

nσ = (nσ,1, . . . , nσ,Kσ)′, where nσ,c is the number of h2σ,ims equal to h2∗σ,c. It follows that∑Kσ
c=1 nσ,c = NA.

If the membership to the cth cluster includes a large number of fund-regimes then nσ,c

will be large relative to NA. Then according to Eq. (19), the cth cluster will have a greater

chance of a new fund-regime being assigned to it. A nice manageable number of groups

occurs, and a sparse, parsimonious, mixture representation of the nonparametric prior is

found in

EGσ,0 [EGσ [πσ(σ2|Gσ, H∗σ,nσ)]] =
ησ

ησ + NA

∫
IG(σ2|νσ/2, νσh2∗σ /2) dGσ,0

(
h2∗σ
)

+

Kσ∑
c=1

nσ,c
ησ + NA

IG(σ2|νσ/2, νσh2∗σ,c/2). (20)

By partitioning the funds and their regimes into large, small, and possibly singleton

(nσ,c = 1) groups where the members have similarly distributed fund-regime parameters,

the DP hyperprior is robust to global shrinkage. Highly skilled funds and extraordinary

performing trading strategies are able to speak for themselves in determining their group.

Members then share in the information found in their group and the regime parameters

shrink locally towards the group’s hyperparameters.12

Going forward we drop the expectation operators from the predictive distributions know-

ing that the prior distributions are unknown and estimated with the expected value of their

posterior. For instance, we denote the posterior predictive distribution of the variances as

πσ(σ2|Y) =

∫
EGσ,0 [EGσ [πσ(σ2|Gσ, ησ, H∗σ,nσ)]]π(ησ, H

∗
σ,nσ|Y) dησdH

∗
σdnσ.

4 Posterior simulation

In this section we describe our approach to sampling from the posterior distribution. We

divide the unknown change point processes, the regime parameters, and the unknown prior

distributions into natural blocks and sample each block from its conditional posterior dis-

tribution. For a thorough and complete description of the sampler and the posterior distri-

butions please refer to the online Appendix.

12The sampler in Maheu & Song (2014) requires the hierarchical prior to be the joint conjugate prior
π(µ, σ2|aµ, h2

µ, h
2
σ), where (aµ, h

2
µ, h

2
σ) ∼ Gµ,σ. Because of the Bayesian preference for sparsity such mul-

tidimensional DP priors for the hyperprior may have fewer posterior clusters, and hence, possibly be less
flexible than our priors.
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There are two types of blocks: within-fund blocks and across-fund blocks. In the joint

likelihood of Eq. (3) we see the within-fund blocks are conditionally independent across

funds and consequently can be parallelized. For a given fund, these blocks include drawing

the change point process, the transition probability, and the fund-regime parameters. The

across-fund parameters are associated with the nonparametric hierarchical priors. They

involve drawing the hyperparameters and concentration parameters. These across-fund

blocks are conditionally independent across hyperparameters.

4.1 Sampling the within-fund unknowns

Draws of the in-sample, change point process, Si,Ti , from the conditional posterior distribu-

tion, π(Si,Ti |YiTi ,αi,σ2
i , qi), are made with the forward-filter, backward-smoother, sampler

of Chib (1996). As we have already pointed out the draws of Si,Ti are parallelized over the

J funds. Note that these latent change point draws only go to the end of the return se-

ries, Yi,Ti . To sample the out-of-sample change points we apply the same forward-backward

approach up to the Mith regime.

Given the draw of Si,Ti , and the hyperparameters, ji and ki, we then draw qi from

π(qi|Ti, si,Ti , ji, ki) = Beta (qi |ji + si,Ti − 1, ki − ji + 1 + (Ti − si,Ti)) , (21)

where si,Ti−1 is the number of change-points out of Ti−1 independent Binomial trails (the

minus one accounts for si,τi = 1 with probability one).

To draw the elements of αi and σ2
i we condition on the current draw of Si,Ti and the

hyperparameters, (aα,im, h
2
α,im) and h2σ,im, m = 1, . . . ,Mi. Given the conjugate hierarchical

prior for the variances found in Eq. (6), σ2im is drawn from the conditional posterior by

sampling from the marginal distribution

π
(
σ2im

∣∣{yi,t : si,t = m}, αim, h2σ,im
)
∝

∏
t:si,t=m

N
(
yi,t
∣∣αim, σ2im ) IG

(
σ2im

∣∣νσ/2, νσh2σ,im ) .
The αims are then drawn from the conditional posteriors

π(αim|{yi,t : si,t = m}, σ2im, aα,im, h2α,im) ∝
∏

t:si,t=m

N(yi,t|αim, σ2im)N(αim|aα,im, h2α,im).

Note that when the ith fund’s regime, m, is greater than si,Ti the posteriors for αim and

σ2im have no return data to condition on. To draw the regime parameters for these Mi−si,Ti
out-of-sample regimes we sample from the posterior conditional priors

σ2im ∼ IG(σ2im|νσ/2, νσh2σ,im), (22)

αim ∼ N(yi,t|αim, σ2im) N(αim|aα,im, h2α,im), (23)
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where the hyperparameters, h2σ,im, aα,im, and h2α,im, for m > si,Ti , are draws from the

out-of-sample posterior hyperprior described in Section 4.2.2.

4.2 Sampling the across-fund unknowns

Given each fund’s posterior draw of αi, σ
2
i , and qi, the sampler moves on to drawing the

across-fund unknowns associated with the nonparametric hierarchical representation of πα,

πσ, and πq. All three priors have hierarchical conjugate hyperpriors for the DP priors

and their base distributions. This allows the hyperparameters to be quickly and efficiently

drawn with the two-step DP sampler of West et al. (1994), MacEachern & Müller (1998),

and described by Neal (2000) in his Algorithm 2.

The DP two-step sampler first sequentially assigns every regime of every fund a ran-

dom hyperparameter and in the process partitions the fund-regimes into groups having the

same hyperparameters. In the second step the hyperparameters of each regime group are

independently drawn.

4.2.1 Transition probability hyperparameters

For the prior of the transition probabilities, the first step of the DP sampler sequentially

draws the ji and ki along with the unknown cluster assignment variable, zq,i, for i = 1, . . . , J .

The assignment variable, zq,i = c, where c = 1, . . . ,Kq, when ji = j∗c and ki = k∗c , and j∗c ,

and k∗c are the unique hyperparameters of the cth cluster. These draws and assignments

are all done by applying the Chinese restaurant process sampling algorithm to the jis and

kis (see Teh (2010) for details on the Chinese restaurant process).

In the second step, separate draws are made from the posterior π(j∗c , k
∗
c |{qi : zq,i =

c}), for c = 1, . . . ,Kq. Since this conditional posterior distribution is not an analytical

distribution, we design an efficient Metropolis-Hasting (MH) sampling scheme to draw from

this distribution. The technical details of this MH sampler are described in the online

Appendix.

4.2.2 Regime hyperparameters

To sample the hyperparameters aα,im, h2α,im and h2σ,im, we partition the hyperparameters,

the alphas, αim, and the variances, σ2im, into in-sample (m ≤ si,Ti) and out-of-sample

(si,Ti < m ≤Mi) regimes. Because Mi exceeds si,Ti , our sampler always has out-of-sample

unknowns where there is no return data.13 As a result the out-of-sample hyperparameter

13If at any point in the sampler the inequality, si,Ti < Mi, did not hold we increased Mi and started the
entire sampler over.
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draws are realizations from the hyperprior’s posterior predictive distribution.

Let the in-sample hyperparameters, aα,im, h2α,im, and, h2σ,im, where m = 1, . . . , si,Ti ,

and i = 1, . . . , J , be stored in Aα,sT , Hα,sT , and Hσ,sT , respectively. Each set contains

the NA in-sample hyperparameters. Also let the NA-element set of in-sample alphas and

variances be defined as AsT = {αim : m = 1, . . . , si,Ti , i = 1, . . . , J} and ΣsT = {σ2im :

m = 1, . . . , si,Ti , i = 1, . . . , J}, respectively.

The two base distributions

Gα,0 ≡ NIG(aα, h
2
α|a0, h2α/κ0, ν0/2, ν0h20/2), Gσ,0 ≡ Gamma(h2σ|c0, 1/b0),

are conjugate to the normally distributed conditional prior in Eq. (4) and the inverse-

gamma distributed conditional prior in Eq. (6), respectively. Hence, drawing the in-sample

hyperparameters from π(Aα,sT ,Hα,sT |AsT , ηα) and π(Hσ,sT |ΣsT , ησ) is a straight-forward

application of the two-step DP sampler (see the Internet Appendix for the technical details

of these two-step draws).

Since the out-of-sample hyperparameters are exchangeable the order in which they are

drawn does not matter. So for a tractable description of the out-of-sample draws one can

think of the sampler starting with the first fund and then sequentially sampling the first

fund’s out-of-sample hyperparameters for the regimes, s1,T1 + 1, . . . ,M1, before moving

on to drawing the out-of-sample hyperparameters for the second fund. The sampler then

continues sequentially drawing the out-of-sample hyperparameters, fund by fund, until the

hyperparameters have been drawn for all J mutual funds.

Formally, the draw of the ith fund’s mth out-of-sample hyperparameters, (aα,im, h
2
α,im),

where m > si,Ti , are sampled from the conditional posterior predictive distribution

1

ηα +MsT +Mim

[
ηαNIG

(
aα,im, h

2
α,im

∣∣a0, h2α/κ0, ν0/2, ν0h20/2)
+
∑
i′<i

Mi′∑
m′=1

δ(aα,i′m′ ,h2α,i′m′ )
+

m−1∑
l=1

δ(aα,il,h2α,il)

 , (24)

whereMim is the number of out-of-sample hyperparameters drawn before sampling (aα,im, h
2
α,im).14

Posterior draws of the out-of-sample hyperparameters, h2σ,im, where m > si,Ti , are similarly

made fund by fund (see the online Appendix for the exact form of the posterior distribution).

14Note that the out-of-sample hyperparameters will cluster into groups having the same unique values,
(a∗α,c, h

2∗
α,c), c = 1, . . . ,Kα. Therefore, we could have written Eq. (24) in terms of the unique hyperparameter

values, however, this would have required additional notation and a more involved explanation.
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4.3 Concentration parameter draws

Posterior draws of the concentration parameters, ηµ, ησ and ηq, are all made using the same

MH algorithm. The density for the MH proposal draw η′• is η′• = η•u•/(1 − u•) where

u• ∼ Uniform(0, 1). Given the Log-Logistic prior for the concentration parameter it follows

that π(η′•|η•) = η•/(η• + η′•)
2. Step-by-step details of the MH sampler are found in the

online Appendix.

4.4 Posterior predictive

To compute the posterior predictive distributions we integrate away the uncertainty found

in the hyperparameters of the hierarchical prior and the DP’s concentration parameters by

numerically averaging the conditional distribution of the parameter over the posterior draws

of these unknowns. For example, the predictive distribution for the variances is calculated

as

πσ(σ2|Y) ≈ R−1
R∑
r=1

[
η
(r)
σ

η
(r)
σ +M

(r)
ST

fPBP (σ2|c0, νσ/2, 1, w)

+

K (r)
σ∑
c=1

n
(r)
σ,c

η
(r)
σ +M

(r)
ST

fIG

(
σ2
∣∣∣νσ/2, νσh2∗(r)σ,c /2

) , (25)

which averages the conditional posterior predictive distribution from Eq. (20) over the R

posterior draws h
2∗(r)
σ,c , η

(r)
σ and M

(r)
ST

, r = 1, . . . , R. Similar calculations are performed for

the posterior predictive densities, πα(α|Y), and πq(q|Y) (see the online Appendix for these

formulas).

5 Mutual fund application

An important question mutual fund investors ask is, do above market returns by a mutual

fund today lead to above market returns in the future? Along with an answer to this

question investors would also like to know if the performance of a fund is linked to the

success of its manager. These and other performance related questions have been addressed

in the academic and profession literature dating back to Jensen (1968).15 Bollen & Whaley

(2009) apply a single-change-point model to a cross-section of hedge funds, but, to our

knowledge a multiple-change-point panel model has never been used to measure mutual

fund skill and its persistence.

15See Elton & Gruber (2013) for a review of the mutual fund performance literature.
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To measure skill and its persistence we analyze mutual fund performance with the

multiple-change-point, four-factor-risk, model

yi,t = αi,si,t +βR,i,si,tRMRFt+βS,i,si,tSMBt+βH,i,si,tHMLt+βM,i,si,tMOMt+σi,si,tεi,t, (26)

where yi,t is the risk-free adjusted, gross rate of return generated by the ith mutual fund

in month t. The risk factors are Fama & French’s (1993) three factors of excess market

returns, RMRFt, market size, SMBt, and book-to-market, HMLt, plus Carhart’s (1997)

momentum portfolio factor, MOMt. The intercept, αi,si,t , is a change point version of the

Jensen (1968) alpha that allows a fund’s level of performance to change with its change

point process, si,t.

We assume the prior for αi,sit and the risk factor parameters, βR,i,sit , βS,i,sit , βH,i,sit ,

and βM,i,sit , consists of the independent marginals denoted by πα, πβR , πβS , πβH , and

πβM , respectively. Each prior is unknown and modeled with the nonparametric hierarchical

prior defined in Eq. (4), (5), and (10). In this paper we only discuss our findings for the

distributions of the alphas but in future work we plan to report and analyze the distributions

of the betas.

5.1 Longitudinal mutual fund data

Our longitudinal data set consists of the monthly mutual fund returns investigated by Jones

& Shanken (2005).16 For ease of comparison we annualized the returns by multiplying the

monthly return by twelve so the alphas are yearly above market rates of return. The data is

comprised of the returns from every US domestic, equity, mutual fund that existed between

January 1961 to June 2001.17 Each fund has at least a years worth of return data and

on average the funds have 77.3 months of returns. Survivorship bias is not a issue since

the panel includes the returns from all 1,293 funds that did not survive to the end of the

sample. In total the data consists of a unbalanced panel of 396,820 monthly observations

across 5,136 domestic equity funds.

5.2 Posterior inference

Posterior inference is made using both nonparametric and parametric hierarchical priors.

As we explained in Section 3.1, neither approach is at an initial disadvantage since we set

the base distribution of the DP hyperpriors equal to the parametric hyperpriors. Both

approaches have similar samplers but the parametric model only needs to draw a single

16We would like to thank Chris Jones for providing us with their data.
17Funds were excluded if they made substantial investments in asset classes other than domestic equities.
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Figure 1: The four horizontal lines are the pre-set thresholds for the maximum number of
in- and out-of-sample regimes, Mi, plotted against the length of the fund’s history, Ti. Each
point is the largest MCMC draw of si,Ti under the nonparametric priors.

global hyperparameter for all the fund-regimes, whereas the nonparametric model can draw

a different hyperparameter value for each fund-regime.

For both models we start collecting the posterior draws after discarding the first 30,000

MCMC draws. We run the sampler for the nonparametric priors first and use its last

draw to initialize the unknowns in the parametric hierarchical prior. Noticeable trending

was observed in the initial draws of the nonparametric approach but by the end of the

burnin period the sampler had settled down and was generating well behaved draws of the

unknowns. We then iterate each sampler for 60,000 more sweeps keeping every sixtieth

draw to construct a random sample of 1,000 posterior draws.18

5.3 Number of regimes

In both the nonparametric and parametric case the maximum number of fund-regimes, Mi,

is set so as not to restrict the number of in-sample regimes. We use four different values, 20,

30, 40 and 50 fund-regimes where the funds with the shortest histories have Mi = 20 and

those with the longest have Mi = 50 (this is visually shown in Figure 1). By discriminating

on the number of returns we are able to speed up the sampler.

To put to rest any doubts that our posterior results have been affected by the preset

value of the Mi, in Figure 1 we plot Mi and the largest draw of si,Ti under the nonparametric

18Because the functional form of the conditional posterior densities have known analytical formulas, 1,000
draws is large enough to accurately represent these posterior densities after marginalizing out the unknowns
over the 1,000 draws.
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Figure 2: Posterior distribution of the transformed concentration parameter uq in panel (a)
and uα in panel (b).

prior against Ti (the technical online appendix contains the same figure for the parametric

prior). In the figures the largest draw of si,Ti never gets close to Mi. It is interesting to

point out that the maximum draw of si,Ti range from two to almost thirty regimes. This

suggests Bollen & Whaley (2009) single-change-point model may be too restrictive.

Under the nonparametric priors there are an average of 12,390 different fund-regimes

over all the funds, which produces an average of 2.4 regimes per fund. The average fund-

regime then lasts around three years. Under the parametric priors the mean number of

total fund-regimes drops to 11,914. This drop is statistically different since the posterior

densities of the number of fund-regimes from the two approaches do not overlap.19 Hence,

we conclude that the parametric priors lead to fewer fund-regimes than the nonparametric

priors.

5.4 Model comparison

Because the nonparametric hierarchical prior nests the parametric when the concentration

parameter is zero, the Savage-Dickey (SD) density ratio of Dickey (1971) can be used to

quickly compute the Bayes factor in favor of the parametric prior (η• = 0). In terms of the

transformed concentration parameter, u• = η•/(1 + η•), the SD density ratio is

BF(u• = 0) ≡ π(u• = 0|Y)

Uniform(u•|0, 1)
,

where π(u•|Y) is the posterior distribution of u•.

19The posterior densities of the number of fund-regimes can be found in the online Appendix.
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In Figure 2 we plot in panel (a) the Rao-Blackwellized posterior distribution of the

transformed concentration parameters uq for the transition probabilities, qi, and in panel

(b), the posterior of uα. The uniform prior for the u•s are indicated in the plots by the

horizontal dashed line at one. Since the prior equals one over its range of zero to one,

visually a SD ratio in favor of the parametric prior is the vertical height of the posterior at

zero. In panel (a) we see that the odds of the data supporting the parametric hierarchical

prior of qi are slightly better than ten-to-one over the nonparametric prior. On the other

hand, in panel (b) the odds in favor of the parametric distribution of alpha is essentially

zero.

Panel (b) of Figure 2 shows there is strong empirical evidence in favor of the distribution

of the alphas having more than one cluster. The posterior is effectively zero at uα = 0,

meaning that a parametric hierarchical prior of the alphas is a poor modeling choice. The

density is also effectively zero at uα = 1 so there is essentially zero empirical evidence

for each fund-regime having its own unique cluster. Given the near zero probabilities for

uα equaling zero or one, assuming the hyperprior, Gα, is known apriori would be a bad

modeling assumption.

5.5 Posterior predictive distributions

In Figures 3, 4, and 5, we plot the nonparametric posterior predictive densities, πq(q|Y),

for the transition probabilities, πα(α|Y), for the alphas, and, πσ(σ2|Y), for the variances,

respectively. Each figure includes the corresponding predictive density under the parametric

hierarchical priors. Eq. (25) is used to compute the density in Figure 5 and similar Rao-

Blackwell formulas are used to compute the other posterior predictive densities.

The nonparametric predictive distribution of the transition probability plotted in Figure

3 has a posterior median of one cluster; ie., Kq = 1. Given the height of the density in panel

(a) of Figure 2 at the orgin, finding there to be only one cluster is not a surprise. Having only

one cluster complete sharing of information under both the nonparametric and parametric

prior of q occurs.

Both posterior predictive densities of q strongly favor a multiple-change-point process

for the parameters of the four-factor risk model. The probability of q being less than 0.006

is essentially zero under both posterior densities of Figure 3. Therefore, skill clearly changes

over time and a mutual fund performance model whose alpha is assumed to be constant

would amount to a very restrictive prior.

The nonparametric density πα(α|Y) plotted in Figure 4 has a posterior median of four

clusters, Kα = 4, with three clear modes at approximately −1.75, 1.5, and 6. Since our
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Figure 3: The parametric and nonparametric posterior predictive density of the transition
probability, q, πq(q|Y).

goal differs from Malsiner-Walli et al. (2016), and, instead, focuses on flexibly modeling the

distribution of the fund-regime alphas, we are unable to make economic statements about

these modes.20 Nonetheless, these modes suggest the average performance levels of three

distinct groups, unskilled, break-even, and skilled fund-regimes, respectively.

The break-even mode of 1.5 has economic support in Berk & Green (2004) who find the

average actively managed mutual fund charges a fee of 1.5 percent. The secondary modes

are also consistent with Berk & Green (2004) and their decreasing return to scale model

of fund performance. Under their model an alpha greater than the break-even level leads

to investors increasing their investment in the skilled fund. This causes the assets under

management of the fund to increase and, because of the decreasing returns to scale, causes

its alpha to move to a lower fund-regime. The opposite occurs for an unskilled fund.

Alphas belonging to the same cluster shrink towards the cluster average. In Figure 4 the

greatest shrinkage is found in the tight variance around the αims belonging to the hypoth-

esized break-even cluster. In contrast, the parametric predictive density shows complete

sharing and global shrinkage. Alphas from the extraordinary fund-regimes end up being

20This is because of identification issues that arise from the label switching problem detailed by Geweke
(2007) and Frühwirth-Schnatter (2006).
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Figure 4: Parametric and nonparametric posterior predictive density of alpha for a future
fund-regime, πα(α|Y).

contaminated by the information from the average fund-regime skill level of the entire pop-

ulation and end looking like the break-even regime.

In Figure 5 we plot the nonparametric posterior predictive density of the regime vari-

ances. This density has two modes – a primary mode near a variance of one-hundred and

a secondary mode near one.21 Except for the mode near one, the parametric posterior

predictive density looks identical to the nonparametric density.

Our working hypothesis for the mode near one is that it belongs to a group of index

funds that track the market. By tracking market returns these funds are less risky and have

on average a lower variance. In contrast non-market index funds take greater risks in order

to outperform the market.

5.6 Posterior fund performance

Each mutual fund in our panel has its own history of posterior smoothed dynamic densities

for αi,t. Of these we have selected the highest performing fund with the longest tenure to

illustrate the smoothed densities of the alphas. The fund is the Fidelity Magellan Fund

which opened for business in 1963. Magellan had one of the best known fund manager in

21Please refer to the online Appendix for a graph that more clearly shows the mode near zero.
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Figure 5: Posterior nonparametric predictive density of a future fund-regimes variance,
πσ(σ2|Y).

Peter Lynch, who managed the fund for thirteen years from May 1977 to May 1990. Besides

Lynch the fund had been managed by five other fund managers over our sample period.

Under the nonparametric priors Magellan experiences on average sixteen regimes over its

entire time period, whereas the parametric priors uncovers an average of seventeen regimes.

Magellan’s probability of switching regimes under both types of hierarchical priors is nearly

identical. Under the nonparametric priors the transition probability is 0.022, whereas it is

0.021 for the parametric priors. Both probabilities are only slightly larger than the 0.018

posterior transition probability for the population. Thus, regardless of the hierarchical prior,

the duration of a Magellan regime is only slightly longer than the typical fund-regime.

In Figure 6 we plot the posterior median and highest probability intervals (HPD) for

the 90, 75, and 50 percentile of Magellan’s posterior distribution πµ(αFM,t|Y) from June

1963 to June 2001 (please refer to the online technical appendix for the calculation of these

distributions). In the top panel are the HPDs from the nonparametric priors and in the

bottom panel are those for the parametric priors. Each fund manager’s tenure is denoted

by the five vertical lines with the longest tenure being that of Lynch.

Comparing the top and bottom panels of Figure 6 we see how the global shrinkage

caused by the parametric (bottom) approach dampens the exceptional regimes relative to
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Figure 6: The highest probability density intervals (HPD) and posterior medians (white
dots) under the nonparametric prior (top graph) and parametric prior (bottom graph) from
the posterior densities π(αFM,t|Y), t = 06/1963, . . . , 06/2011 for Fidelity Magellan. The
vertical lines at 104 (01/1972), 168 (05/1977), 324 (05/1990), 350 (07/1992), 397 (06/1996),
and 457 (06/2001) denote a change in the fund manager. Lynch was the manager from 168
to 324.
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the local shrinkage of the nonparametric priors (top). Although the parametric posteriors

during the Lynch era (observations 168 to 324) had higher medians and HPD intervals than

during the rest of Magellen’s history, the intervals shifted up before Lynch. Contrast this

with the dramatic increase in the nonparametric posterior’s medians and HPDs after Lynch

took over. Under the parametric prior any exceptional performance attributable to Lynch

is muted and occurred before he became manager.

Except for the instance where the alphas for Magellan were already transitioning to a

new regime, changing managers fails to result in any change in fund performance under

either the parametric or nonparametric priors. Both panels in Figure 6 suggest Magellan

continued to deliver the same alpha before and after a change in the manager.

The nonparametric posterior medians in Figure 6 begin transitioning later and take

fewer months to reach their new regime than do the parametric posterior medians. Local

shrinkage under the nonparametric approach is the likely reason. Instead of shrinking

towards the global average, local shrinkage pulls the medians towards the local average.

This explains the quick transition from Lynch’s early ordinary performance levels to his

extraordinary returns of eighteen to nineteen percent a year.

Figure 7 plots each of the posterior densities πµ(αFM,t|Y) used to compute the HPDs in

the top panel of Figure 6. Magellan’s five fund manager’s tenures are denoted by different

gray scales along with axis ticks. Many of the densities resemble the nonparametric posterior

predictive density plotted in Figure 4 with their three modes.22 This resemblance occurs

because the posterior predictive distribution is essentially the prior for Magellan once the

prior predictive has been updated with the information contained in the return data of the

5,135 other funds.

There are also densities in Figure 7 that are visibly different from the population dis-

tribution of the alphas. These exceptional densities have fewer than three modes and are

centered at larger values of alpha. For instance, during the Lynch period the posterior is

unimodal at 18%. These episodes are periods of truly exceptional skill and performance.

Lynch’s investment strategy during this period eliminated the negative and break-even

modes. This exceptional performance lasts for nearly three years before the break-even

mode reappears and the primary mode retreats to a lower but still exceptional alpha of six

percent. This extraordinary shape, relative to the population distribution of skill, is kept

for the remainder of Lynch’s time as manager and through most of the tenure of the next

manager.

22Although not shown here this is also the case for Magellan’s parametric posterior densities,
πµ(αFM,TFM+1|Y).
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Figure 7: Posterior densities for the alpha of the Fidelity Magellan Fund, π(αFM,t|Y), where
t = 06/1963, . . . , 06/2001. A change in the shade of gray denotes the end to, and the start
of, one of Magellan’s six fund managers. These dates are denoted by tics on the x-axis
(Lynch’s tenure began in 05/1977 and ended in 05/1990).
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6 Conclusion

In this paper we extended the change point model to a panel of multiple-change-point pro-

cesses where the parameters are modeled with nonparametric hierarchical priors. Under

nonparametric hierarchical priors our multiple-change-point panel model shares informa-

tion from across the regimes and panel individuals through the hierarchical prior’s hyper-

parameters and their unknown hyperprior distribution to produce more robust parameter

estimates. Our nonparametric hierarchical priors cluster together the individuals and their

regimes into groups that have similar behavior and locally shrink the unknown parameters

towards the average of the group. This partial sharing and local shrinkage allows extreme

regimes and individuals to be identified.

We apply our multiple-change-point panel model and nonparametric hierarchical priors

to a longitudinal data set of mutual fund returns to investigate the skill level of mutual

funds and how likely they are to maintain this skill into the future. There is overwhelm-

ing empirical evidence supporting change-point behavior in the fund-regime parameters.

Hence, assuming that mutual fund skill is constant over the history of a fund is a very bad

assumption.

Under the nonparametric hierarchical priors we find on average four clusters and three

modes for the population distribution of skill; a primary mode at 1.5 percent a year, another

mode at −1.75, and a very diffuse mode at around 6 percent. Compared to the parametric

prior’s single mode at 1.5 percent there is strong empirical evidence against using the

parametric hierarchical prior to estimate skill. Having three modes keeps the estimate of

skilled and unskilled fund’s performance from being masked by shrinking to the average

performance level of 1.5 percent.

Our findings for the population carries over to the performance of one of the longest lived

skilled funds in the panel, Fidelity Magellan. We find Magellan to have extended periods

of time where its performance is average, highly skilled, and also low skilled. Under the

parametric prior these periods of extraordinary performance were not that extraordinary.

Periods of exceptional skill were hidden by the parametric prior’s restrictive single mode

assumption for the population distribution of skill.

In future research we aim to design a method capable of finding the funds and their

regimes that have similar posterior densities and use them to investigate the structural

nature of skill. These and many other interesting questions can be addressed using our

nonparametric hierarchical prior with the multiple-change-point panel model.
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Online Appendix

A The model

In this section we describe a factor model of returns for fund-regimes. Within a single

fund-regime, the model is quite standard. The novelty lies in two places: the determina-

tion of the regimes within a single fund and the connections across the fund-regimes via

hyperparameters in the prior distribution.

Fund returns and regimes

Let J denote the number of mutual funds and let i ∈ {1, . . . , J} index the funds. For fund

i there are Ti observations that occur at times

t ∈ Ti = {τi, τi + 1, . . . , Ti}, (A.1)

where 1 ≤ τi < Ti ≤ Tmax. Note Ti = |Ti|. Let yi,t denote the t-th observation for the i-th

fund. Let

Yi,t := (yiτi , . . . , yit), (A.2)

so that Yi,Ti denotes the full set of returns for fund i.

Let Mi denote the maximum number of regimes for fund i and let m ∈ {1, . . . ,Mi}
index the regime number. Let si,t denote the regime number for fund i at observation t.

Note si,Ti ≤ min[Ti,Mi]. Let

Si,t := (si,τi , . . . , si,t), (A.3)

so that Si,Ti denotes the full set of regime indicators for fund i. Let S := {Si,Ti}Ji=1 denote

the complete set of states for all funds. We make the following independence assumption

regarding the distribution of the observations given the states:

p({Yi,Ti}Ji=1|S) =
J∏
i=1

p(Yi,Ti |Si,Ti) =
J∏
i=1

Ti∏
t=τi

p(yi,t|si,t). (A.4)

Assigned and unassigned regimes

The index set of potential regimes is

IM := {(i,m) : i ∈ {1, . . . , J} ∧ m ∈ {1, . . . ,Mi}}. (A.5)
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The number of potential regimes is NM =
∑J

i=1Mi. Conditioning on the states, the index

set of assigned regimes (i.e., those regimes associated with observations) is

IA := {(i,m) ∈ IM : m ≤ si,Ti}, (A.6)

which has NA =
∑J

i=1 si,Ti elements. The index set of unassigned regimes is

IU := {(i,m) ∈ IM : m > si,Ti} = IM \ IA, (A.7)

which has NU = NM −NA elements.23

A single fund-regime

The model is connected to the data via the fund-regimes. Let

Yi,m := {yi,t ∈ Yi,Ti : si,t = m} (A.8)

denote the set of observations for regime m in fund i and let Ti,m denote the number of

observations in Yi,m. The fund-regime constitutes the unit of analysis. For unassigned

regimes, where m > sn,Tn , we have Yi,m = ∅ and Ti,m = 0.

We restrict ourselves to factor models of the following sort. Let N denote the number

factors in the model of returns. For yi,t ∈ Yi,m given m ≤ si,Ti ,

yi,t = αi,m +

N∑
j=1

βji,m F
j
it + εi,t, (A.9a)

where

εi,t
iid∼ N(0, σ2i,m). (A.9b)

For more compact notation, let

φim := (φ0im, φ
1
im, . . . , φ

N
im) = (αi,m, β

1
i,m, . . . , β

N
i,m) (A.10a)

θim := (φim, σ
2
i,m). (A.10b)

In addition, let Xit = (1, F 1
it, . . . , F

N
it ), where Fit = (F 1

it, . . . , F
N
it ) is the vector of market-

wide factors properly-aligned to fund i. With this notation, we can express (A.9) as

p(yi,t|si,t = m) = p(yi,t|θim) = N(yi,t|X>it φim, σ2i,m). (A.11)

23One way to eliminate structrual breaks is to set Mi = 1 for all i, in which case IM = IA , IU = ∅, and
NM = J . Another way is to set the probability of a regime change to zero for all funds. See below.
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Consequently, the likelihood for θim can be expressed as

p(Yim|θim) = N(Yim|Xim φim, σ2i,mITim), (A.12)

where

Xim := {Xit : si,t = m}. (A.13)

We complete the model of a fund-regime by providing a prior for the fund-regime pa-

rameters. The prior for θim (conditional on hyperparameters) is24

p(θim|aim, h2φim, h2σim) = N(φim|aim, Bim) Inv-Gamma(σ2im|νσ/2, h2σim νσ/2), (A.14)

where Bim = diag(h2φim) is a (N + 1)× (N + 1) diagonal matrix and

aim := (a0im, a
1
im, . . . , a

N
im) (A.15a)

h2φim := (h2,0φim, h
2,1
φim, . . . , h

2,N
φim). (A.15b)

Reexpressing the hyperparameters

Before we proceed, it is convenient to express the hyperparameters in the prior for θim

[see (A.15)] as follows. Let

ψjim := (ajim, h
2,j
φim) and ψσim := h2σim. (A.16)

Using this notation, we can reexpress the prior for θim [see (A.14)] as

φjim|ψ
j
im ∼ N(ajim, h

2,j
φim) for j = 0, . . . , N (A.17a)

σ2im|ψσim ∼ Inv-Gamma(νσ/2, h
2
σim νσ/2). (A.17b)

This formulation will prove useful in computing the posterior distributions for the hyper-

parameters.

24For reference, note

Inv-Gamma(σ2|ν/2, s2 ν/2) =
e
− νs2

2 σ2

(
νs2

2σ2

)ν/2
s2 Γ

(
ν
2

)
Gamma(s2|a, 1/b) =

e−b s
2

(b s2)a−1

b−1 Γ(a)
.
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Prior for the regimes

We complete the model of a fund by providing a prior for the regime changes within a fund.

Let qi denote the probability of a change in regime (i.e., state) for the i-th fund. The

conditional prior for the regimes within a fund is

p(SiTi |qi) = p(si,τi)

Ti−1∏
t=τi

p(si,t+1|sit, qi), (A.18)

where p(si,τi = 1) = 1 and

p(si,t+1 = `|si,t = m, qi) =


1− qi ` = m < Mi

qi ` = m+ 1

1 ` = m = Mi

0 otherwise

. (A.19)

The prior for qi is given by

p(qi|ψqi ) = Beta(qi|ji, ki − ji + 1), (A.20)

where

ψqi := (ji, ki) (A.21)

denotes the hyperparameter in the prior for qi. We assume conditional independence across

funds as follows:

p
(
{(SiTi , qi)}Jn=1

∣∣{ψqi }Ji=1

)
=

J∏
i=1

p(SiTi |qi) p(qi|ψ
q
i ). (A.22)

Priors for the hyperparameters

A central feature of the model is the sharing of hyperparameters across fund-regimes. The

mechanism for sharing involves grouping hyperparameters into clusters and assigning a

common value to all hyperparameters within a given cluster — the value of the cluster

parameter. In other words, we identify a fund-regime parameter with the parameter of the

cluster to which it has been assigned. We adopt the Chinese Restaurant Process (CRP)

representation of the Dirichlet process prior distribution for the clustering. The cluster

parameters themselves have a prior distribution called the base distribution (which the

fund-regime hyperparameters inherit).

We first provide a skeleton for the hyperprior that can be applied to the various cases.
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Hyperprior skeleton

We begin with the classifications. The CRP can be characterized as follows:

z1:K |η ∼ CRP(η), (A.23)

where z1:K denotes a collection of the K classifications variables, zk , k = 1, . . . ,K, and η

denotes the concentration parameter of the Dirichlet process DP (η,G0). In order to provide

an explicit representation, let Kk = max[z1:k ], the number of clusters in z1:k , and let nk
c

denote the multiplicity of c in z1:k so that
∑k

c=1 n
k
c = k . Then (A.23) can be expressed as

p(z1:K |η) =
K−1∏
k =1

p(zk +1|z1:k , η), (A.24)

where z1 = 1 and

p(zk +1 = c|z1:k , η) =

{
nk
c

k +η c ∈ {1, . . . ,Kk }
η

k +η c = Kk + 1
. (A.25)

Having determined the classifications, a cluster parameter is drawn from the base dis-

tribution G0 for each of the KK clusters:

ψ∗c
iid∼ G0. (A.26)

Finally, combining the classifications with the cluster parameters, a hyperparameter is set

equal to the cluster parameter for the cluster to which it (the hyperparameter) belongs:

ψk = ψ∗zk
. (A.27)

Details for clustering

We put a prior on all of the hyperparameters associated with the full set of potential factor-

model coefficients; namely,

{ψjim}M := {ψjim : (i,m) ∈ IM} (A.28a)

{ψσim}M := {ψσim : (i,m) ∈ IM}. (A.28b)

Let zjim denote the cluster to which ψjim is assigned, so that zjim = c means ψjim = ψj∗c . Sim-

ilarly, let zσim denote the cluster assignment for ψσim. The prior for the cluster assignments

can be expressed as

{zjim}M|ηj ∼ CRP(ηj) (A.29a)

{zσim}M|ησ ∼ CRP(ησ). (A.29b)
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where ηj and ησ are the DP prior’s concentration parameters.

Let zqi denote the cluster assignment for ψqi and let {zqi }1:J denote the set of assignments

for all funds. The prior for the classifications can be expressed as

{zqi }1:J |ηq ∼ CRP(ηq), (A.30)

where ηq is the concentration parameter.

The prior for the concentration parameters is given by

log(η`) ∼ Logistic(1, 1), (A.31)

for ` ∈ {j, σ, q}.25

Base distributions

We now turn to the base distributions for the cluster parameters. Let us denote the cluster

parameters by

ψj∗c = (aj∗c , h
2j∗
φc ), ψσ∗c = h2∗σc, and ψq∗c = (j∗c , k

∗
c ), (A.32)

where c is an index for the cluster number. (Each of the cluster parameters has its own

index c.) The base distributions for ψj∗c and ψσ∗c are given by

p(ψj∗c ) = p(aj∗c , h
2j∗
φc ) = N(aj∗c |a

j
0, h

2j∗
φc /κ

j
0) Inv-Gamma(h2j∗φc |ν

j
0/2, h

2j
0 νj0/2) (A.33a)

and

p(ψσ∗c ) = p(h2∗σc) = Gamma(h2∗σc|c0, 1/b0). (A.33b)

The base distribution for ψq∗c can be expressed as p(ψq∗c ) = p(j∗c , k
∗
c ) = p(j∗c |k∗c ) p(k∗c ),

where26

j∗c |k∗c ∼ Uniform(1, . . . , k∗c ) (A.34a)

k∗c − 1 ∼ Geometric(ξ0). (A.34b)

25For reference, note Log-Logistic(x|a, b) = ab−axa−1/(1 + (x/b)a)2.
26Let ξ0 = 1/200.
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B Sampling from the posterior

We now present our approach to sampling from the posterior distribution. We divide the

parameters into blocks and sample each block conditional on the parameters in the other

blocks (Gibbs sampling approach). For each block we adopt an appropriate strategy for

sampling.

There are two types of blocks: within-fund blocks and across-fund blocks. The within-

fund blocks are conditionally independent across funds and consequently can be handled in

parallel. The across-fund blocks involve drawing the hyperparameters (via the classifications

and the cluster parameters) and the concentration parameters.

Fund-regime parameters {θim}

Given the likelihood (A.12) and the conditionally conjugate prior (A.14), the two conditional

posteriors are given by

p(φim|Yim, σ2im, aim, Bim) = N(φim|aim, Bim) (B.1a)

where

Bim =
(
σ−2imX

>
imXim +B−1im

)−1
(B.1b)

aim = Bim

(
σ−2imX

>
imYim +B−1im ain

)
(B.1c)

and

p(σ2im|Ynm, φim, h2σim) = Inv-Gamma(σ2im|νim/2, h
2
σimνim/2) (B.2a)

where

νim = νσ + Tim (B.2b)

h
2
σim =

h2σim νσ + (Yim −Ximφim)>(Yim −Ximφim)

νim
. (B.2c)

For unassigned regimes (those regimes for which Yim = ∅), the posterior reduces to the

prior (conditional on the hyperparameters). [See (A.14).]

Regimes {SiTi}

Factor the joint posterior distribution of the states as follows:

p(SiTi |Yi,Ti ,Θi, qi) = p(si,Ti |Yi,Ti ,Θi, qi) p(si,Ti−1|S
Ti
i , Yi,Ti ,Θi, qi) · · ·

p(si,t|St+1
i , Yi,Ti ,Θi, qi) · · · p(si,1|S2

i , YiTi ,Θi, qi), (B.3)
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where

Θi = (θi1, . . . , θiMi) (B.4a)

Sti = (si,t, . . . , si,Ti). (B.4b)

Draws of the states will be made using (B.3) starting with si,Ti and working backwards.

The conditional distributions in (B.3) can be computed as follows:

p(si,t|St+1
i , Yi,Ti ,Θi, qi) ∝ p(si,t|Yi,t,Θi, qi) p(si,t+1|si,t, qi), (B.5)

where

p(si,t = m|Yit,Θi, qi) =
p(si,t = m|Yi,t−1,Θi, qi) p(yi,t|θim)∑Mi

m′=1 p(sit = m′|Yi,t−1,Θi, qi) p(yi,t|θi,m′)
(B.6)

and where

p(si,t = m|Yi,t−1,Θi, qi)

=
m∑

m′=m−1
p(si,t = m|si,t−1 = m′, qi) p(si,t−1 = m′|Yi,t−1,Θi, qi) (B.7)

for t ≥ 2 and p(si,1 = 1|Yi0,Θi, qi) = 1.

Let us streamline the notation and bring out the recursive structure. We define three

matrices. First, let Qi denote the Mi ×Mi matrix where [see (A.19)]

(Qi)m` = p(si,t+1 = `|si,t = m, qi). (B.8)

Second, let Li denote the Ti ×Mi matrix where

Litm = p(yi,t|θim) = N(yi,t|X>it φim, σ2i,m), (B.9)

and let Lit denote the tth row of Li. Third, let Gi denote the Ti ×Mi matrix where27

Gitm = p(si,t = m|Yi,t−1,Θi, qi) p(yi,t|θim) (B.10)

and similarly let Git denote the tth row of Gi.

With this notation, the forward recursion is given by

Git ∝ (Git−1Qi) ◦ Lit, (B.11)

27Note Gitm = p(si,t = m, yi,t|Yi,t−1,Θi, qi).
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where “◦” denotes the Hadamard (component-by-component) product. The recursion is

initialized with Gi1 = (Li11, 0, . . . , 0). The probabilities of the states at t = Ti are given by

p(si,Ti = m|Yi,Ti ,Θi, qi) ∝ GiTim, (B.12)

while for t < Ti they are

p(si,t = m|si,t+1 = `, Yi,Ti ,Θi, qi) ∝ (Git ◦Q`i)m, (B.13)

where Q`i denotes the `th column of Qi.
28

The backward sampler begins with (B.12) and continues with (B.13) iteratively until

si,1 is drawn.

Regime-change probabilities {qi}

Given the states and the classifications, we can draw qi as follows. The likelihood for qi is

Binomial(si,Ti − 1|Ti − 1, qi), (B.14)

since siTi − 1 is the number of change-points in Ti − 1 independent Bernoulli trials where

qi is the probability of a change-point for a single Bernoulli trial. Therefore the conditional

posterior distribution is

p(qi|si,Ti , ψ
q
i ) = Beta

(
qi|ji + si,Ti − 1, ki − ji + 1 + (Ti − si,Ti)

)
. (B.15)

Hyperparameters

We now turn to drawing the hyperparameters. Recall there are three sets of hyperparame-

ters: {ψjim}M, j = 0, 1, . . . , N , {ψσim}M, and {ψqi }1:J , where ψjim = (ajim, h
2j
φim), ψσim = h2σim,

and ψqi = (ji, ki).

Regarding ψjim and ψσim, it is necessary to distinguish between those hyperparameters

associated with regimes that have been assiged (conditional on the states S) and those that

have not. In particular, let {ψjim}A and {ψσim}A denote the sets of these hyperparameters

for regimes that have been assigned and let {ψjim}U and {ψσim}U denote the sets of these

hyperparameters for regimes that are unassigned.

For each of {ψjim}A, {ψσim}A, and {ψqi }1:J , we adopt the approach to sampling based

on Algorithm 2 in Neal (2000), although the details differ across the three sets of hyperpa-

rameters. For the remaining two sets of hyperparameters, {ψjim}U and {ψσim}U, we sample

from the distributions conditioned on the respective assigned hyperparameters {ψjim}A and

{ψσim}A.

28If si,t = 1 then si,t−1 = 1, while if si,t = t, then si,t−1 = t − 1. In either of these cases no more
computation is required.
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Drawing {ψjim}A

We must establish some additional notation. Define the set of indices of specific regimes

associated with cluster c,

Ijc := {(i,m) ∈ IA : zjim = c}, (B.16)

and the set of parameters associated with cluster c,

{φjim}c := {φjim|(i,m) ∈ Ijc}. (B.17)

Let njc denote the number of elements in {φjim}c. Let {zjim}A denote the set of classifications

for assigned regimes. Assume {zjim}A is normalized so that the set of unique values equals

{1, 2, . . . ,Kj}, where Kj is the number of distinct classifications. Note
∑Kj

c=1 n
j
c = NA.

Note that {φjim}c plays the role of the “observations” with regard to the “parameter”

ψj∗c in the conditional posterior. In this role, the likelihood for a single observation is given

by the prior (A.17a). Thus the posterior for ψj∗c given {φjim}c is:

p(ψj∗c |{φ
j
im}c) = N(aj∗c |aj , h

2j∗
φc /κj) Inv-Gamma(h2j∗φc |νj/2, h

2
j νj/2), (B.18)

where

κj = κj0 + njc (B.19a)

νj = νj0 + njc (B.19b)

aj =

(
κj0
κj

)
aj0 +

(
njc
κj

)
φ
j
c (B.19c)

h
2
j =

(
νj0
νj

)
hj20 +

(
njc

νj0

)
σ̂2
φjc

+

(
κj0
κj

)(
njc
νj

)
(φ
j
c − a

j
0)

2, (B.19d)

where the “observations” are summarized by

φ
j
c :=

1

njc

∑
ι∈Ijc

φjι and σ̂2
φjc

:=
1

njc

∑
ι∈Ijc

(φjι − φ
j
c)

2. (B.20)

Classification

It remains to describe how the elements of {zjim}A (the classifications for the assigned

regimes) are drawn. Let {zjim}
−ι
A denote the (possibly renormalized) vector of classifications

after having removed case ι for some ι ∈ IS. Renormalization will occur if — before removal

— the cluster associated with observation ι is a singleton (i.e., nj
zjι

= 1), in which case ψj∗
zjι
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will be discarded, the remaining clusters will be relabeled, and the corresponding classifi-

cations will be adjusted. Let K −ιj = max[{zjim}
−ι
A ] and let (njc)−ι denote the multiplicity of

class c in {zjim}
−ι
A .

The full conditional probability of zjι given the “observations” is

p(zjι |{z
j
im}
−ι
A , φjι , ηj) ∝


(njc)

−ι

NA−1+ηj p(φ
j
ι |zjι = c) c ∈ {1, . . . ,K −ιj }

ηj
NA−1+ηj p(φ

j
ι ) c = K −ιj + 1

, (B.21)

where

p(φjim|z
j
im = c) = N(φjim|a

j∗
c , h

2j∗
φc ), (B.22)

and

p(φjim) =

∫
N(φjim|a

j∗
c , h

2j∗
φc )N(aj∗c |a

j
0, h

2j∗
φc /κ

j
0) Inv-Gamma(h2j∗φc |ν

j
0/2, h

j2
0 νj0/2) dψj∗c

= t
νj0

(φjim|a
j
0, (1 + 1/κj0)h

j2
0 ).

(B.23)

If a new cluster is chosen, then populate it with a draw from the posterior ψj∗c |φjim [see (B.18)].

Drawing {ψσim}A

Let

Iσc := {(i,m) ∈ IA : zσim = c}, (B.24)

and let {σ2im}c := {σ2im|(i,m) ∈ Iσc }, where the number observations in {σ2im}c equals nσc .

Let Kσ denote the number of distinct classifications in the collection {zσim}.
Again, {σ2im}c play the role of the observations where the likelihood for a single obser-

vation is given by (A.17b). The posterior for h2∗σc given {σ2im}c is

p(h2∗σc|{σ2im}c) = Gamma(h2∗σc|cc, 1/bc), (B.25)

where

cc = c0 +
νσ
2
nσc (B.26a)

bc = bc +
νσ
2

∑
ι∈Iσc

1

σ2ι
. (B.26b)
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Classification

The probabilities for classification involve the following likelihoods: For existing clusters,

p(σ2im|zσim = c) = Inv-Gamma(σ2im|νσ/2, h2∗σc νσ/2), (B.27)

while for a new cluster we use the predictive distribution:

p(σ2im) =

∫
Inv-Gamma(σ2im|νσ/2, h2∗σc νσ/2)Gamma(h2∗σc|c0, 1/b0) dh2∗σc

=

(
σ2
im
w + 1

)−(c0+ νσ
2
) (σ2

im
w

)c0−1
wB

(
c0,

νσ
2

) where w = νσ/(2 b0),

(B.28)

which is the PDF of the three-parameter generalized Beta-Prime distribution.29 If a new

cluster is chosen, then populate it with a draw from the posterior h2∗σc|σ2im [see (B.25)].

Unassigned regimes

Regarding {ψjim}U and {ψσim}U, we draw the classifications from the CRP conditioned on

the cluster counts of the assigned hyperparameters:

{zjim}U|{z
j
im}A, ηj ∼ CRP({njc}

Kj
c=1, ηj) (B.29a)

{zσim}U|{zσim}A, ησ ∼ CRP({nσc }
Kσ
c=1, ησ), (B.29b)

where CRP({nc}K
c=1, η) indicates conditioning on the existing classifications. The unassigned

hyperparameters that are classified with already existing clusters are set equal to the cluster

parameters from those clusters. For each new cluster drawn via (B.29), a cluster parameter

is drawn from the associated base distribution [see (A.33)].

Drawing {ψqi }1:J

We adopt the scheme described in Fisher (2017) (see for omitted details), which uses Neal’s

Algorithm 2.

Let

Iqc := {i ∈ {1, . . . , J} : zqi = c}, (B.30)

and let {qi}c := {qi|i ∈ Iqc }, where the number observations in {qi}c equals nqc. Let Kq
denote the number of distinct classifications in the collection {zqi }.

29Since Inv-Gamma(σ2
im|νσ/2, h2∗

σc νσ/2) ≡ Gamma(h2∗
σc|νσ/2 + 1, 2σ2

im/νσ), (B.28) is also the PDF of a
“compound gamma” distribution.
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Fisher (2017) presents two methods for drawing ψq∗c . The first method assumes nqc = 1.

In this case, the conditional posterior is given by

p(j∗c , k
∗
c |qi) =

p(qi|j∗c , k∗c ) p(j∗c |k∗c ) p(k∗c )
p(qi)

= p(j∗c |k∗c , qi) p(k∗c ), (B.31)

where

p(j∗c |k∗c , qi) =

(
k∗c − 1

j∗c − 1

)
q
j∗c−1
i (1− qi)k

∗
c−j∗c = Binomial(j∗c − 1|k∗c − 1, qi). (B.32)

Note that k∗c is not identified and is drawn from its prior distribution and then (j∗c − 1) ∼
Binomial(k∗c − 1, qi) with the proviso that if k∗c = 1 then j∗c = 1.

Now assume nqc ≥ 2. The posterior for (j∗c , k
∗
c ) is given by

p(ψq∗c |{qi}, {z
q
i }, η) = p(ψq∗c |{qi}c)

= p(j∗c , k
∗
c )×

(∏
i∈Iqc qi

)j∗c−1 (∏
i∈Iqc (1− qi)

)k∗c−j∗c
B(j∗c , k

∗
c − j∗c + 1)n

q
c

.
(B.33)

One can adopt a Metropolis-Hastings scheme for the (r + 1) draw given the rth draw with

the following proposal:

k∗
′
c − 1 ∼ Poisson(k∗(r)c ) (B.34)

j∗
′
c − 1 ∼ Binomial(k∗

′
c − 1, q(r)c ), (B.35)

where qc = 1
nqc

∑
i∈Iqc qi is the average of {qi}c. Let

p̂((ψq∗c )′|ψq∗c , qc) := Poisson(k∗
′
c − 1|k∗c )Binomial(j∗

′
c |k∗

′
c − 1, qc). (B.36)

Then

ψq∗ (r+1)
c =

{
(ψq∗c )′ M(r)

c ≥ u(r+1),

ψ
q∗ (r)
c otherwise,

(B.37)

where u(r+1) ∼ Uniform(0, 1) and

M(r)
c =

p((ψq∗c )′|{qi}(r)c )

p((ψq∗c )(r)|{qc}(r)c )
× p̂((ψq∗c )(r)|(ψq∗c )′, q

(r)
c )

p̂((ψq∗c )′|(ψq∗c )(r), q
(r)
c )

. (B.38)

Classification

The full conditional probability of zi given the “observations” is

p(zi|ηq, {zqi }
−i, {ψ∗c}−i, qi) ∝

{
(nqc)

−i

J−1+ηq Beta(qi|j∗c , k∗c − j∗c + 1) c ∈ {1, . . . ,K −iq }
ηq

J−1+ηq Uniform(qi|0, 1) c = K −iq + 1
. (B.39)
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The uniform predictive for a new cluster follows from the adding-up property of Bernstein

polynomials in conjunction with the uniform conditional prior for j∗i |k∗i .
If a new cluster is selected, then the new cluster parameter is drawn from the posterior

using the scheme described above for nqi = 1.

Concentration parameters

For the purposes of this section, let η stand for any of the concentration parameters (ηj , ητ ,

or ηq). In addition, let {zi} denote the corresponding set of classifications, let nc denote the

number of elements in cluster c, and let K denote the number of clusters. Let B =
∑K

c=1 nc.

(Note, B = NS for ηj and ησ while B = J for ηq.) It can be shown that the likelihood for

the concentration parameter is

p({zi}|η) =
ηK ∏K

c=1(nc − 1)!

(η)B
∝ ηK

(η)B
, (B.40)

where (η)B :=
∏B
j=1(j − 1 + η) = Γ(B + η)/Γ(η).

It is convenient to change variables to w = log(η). Recall w ∼ Logistic(1, 1). We can

express the product of the likelihood and the prior in terms of w:

p({zi}|w) p(w) =
e(K +1)w Γ(ew)

(1 + ew)2 Γ(B + ew)
. (B.41)

Draws of w can be made via a Metropolis scheme using a symmetric proposal distribution

such as w′ ∼ Logistic(w(r), h), where w(r) = log(η(r)). The next element in the chain is

given by

η(r+1) =

{
ew
′ p({zi}|w′) p(w′)

p({zi}|w(r)) p(w(r))
≥ u(r+1),

η(r) otherwise,
(B.42)

where u(r+1) ∼ Uniform(0, 1).

C Posterior distributions

In this section we discuss the posterior distributions for the population (generic) and specific

mutual fund (specific) cases.

Population distribution of the factor coefficients

Let Y := {YiTi}Ji=1. For each factor coefficient there is a posterior predictive distribution

for the generic case of a gth unobserved mutual fund:

p(φjg|Y) =

∫
p(φjg|ϑj) p(ϑj |Y) dϑj , (C.1)
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where

p(φjg|ϑj) =

Kj∑
c=1

njc
ηj + NA

N(φjg|aj∗c , h
2j∗
φc ) +

ηj
ηj + NA

p(φjg). (C.2)

Recall p(φjg) is the prior predictive distribution [see (B.23)]. The posterior predictive dis-

tribution (C.1) can be approximated by

p(φjg|Y) ≈ 1

R

R∑
r=1

p(φjg|ϑ
(r)
j ). (C.3)

There is a similar expression for the posterior predictive distribution for σ2g .

Specific fund-observation parameters

Each fund-observation, indexed by (i, t), is associated with a regime sit = m. Let φit denote

the fund-regime coefficients for fund i at time t. Referring to (B.1a), we have

p(φit|YiTi , sit = m) = N(φit|µim, Bim). (C.4)

Then,

p(φit|Y) =

Mi∑
m=1

p(φit|YiTi , sit = m) p(sit = m|Y). (C.5)

This distribution may be approximated as follows:

p(φit|Y) ≈ 1

R

R∑
r=1

p(φit|YiTi , s
(r)
it ) =

1

R

R∑
r=1

N(φit|µ(r)im, B
(r)
im). (C.6)

Similarly, the marginal distribution for φjit may be approximated by

p(φjit|Y) ≈ 1

R

R∑
r=1

p(φjit|YiTi , s
(r)
it ), (C.7)

where

p(φjit|YiTi , sit) =

∫
p(φit|YiTn , sit) dφ

−j
it = N(φjit|µ

j
im, B

jj
im). (C.8)

For every fund-coefficient, indexed by (i, j), we have a sequence of posterior distributions:

{p(φjit|Y)}Tit=τi . (C.9)

We will examine various features of these distributions. If there are no regime changes in

going from t to t+1, then the two distributions will be the same. For a fund with no regime

changes, the entire sequence of distributions will be the same.
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Population distribution of the regime-switching probabilities

The conditional distribution (A.34a) delivers a uniform prior predictive for the probability

of a regime change (regardless of the prior for k∗c ):

p(qi) = Uniform(0, 1). (C.10)

Posterior

We are interested in the predictive distribution of the transition probability for the unob-

served gth fund

p(qg|Y) =

∫
p(qg|ϑq) p(ϑq|Y) dϑq, (C.11)

where

p(qg|ϑq) =

Kq∑
c=1

nqc
ηq + J

Beta(qg|j∗c , k∗c − j∗c + 1) +
ηq

ηq + J
. (C.12)

Recall p(φjg) is the prior predictive distribution [see (B.23)]. The posterior predictive dis-

tribution (C.1) can be approximated by

p(qg|Y) ≈ 1

R

R∑
r=1

p(qg|ϑ(r)q ). (C.13)

Specific regime-switching probabilities

The posterior distribution for an observed ith fund’s probability of switching a regime qi,

is given by

p(qi|Y) =

∫
p(qi|ψq∗c ) p(ψq∗c |Y) dψq∗c , (C.14)

where c = zqi and i = 1, . . . , J . We can approximate this posterior distribution by

p(qi|Y) ≈ 1

R

R∑
r=1

Beta(qi|j∗(r)c(r)
, k
∗(r)
c(r)
− j∗(r)

c(r)
+ 1), (C.15)

where c(r) = z
q (r)
i .

Forecasting

Additional predictive states can be drawn via

p(si,Ti+1, . . . , si,Ti+H |siTi , qi) =

H∏
h=1

p(si,Ti+h|si,Ti+h−1, qi). (C.16)
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Figure 8: Maximum number of regimes versus number of observations, fund-by-fund. Max-
imum number allowed shown for reference.
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Figure 9: Smoothed histograms for total number of regimes.
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Figure 10: Detail of the posterior predictive distribution for σ2 showing the mode located
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